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Abstract
Two bilinear differential–difference equations are proposed in this paper. The
corresponding bilinear Bäcklund transformations (BTs) are presented. Starting
from the bilinear BTs, soliton solutions of the proposed equations are generated.
By dependent variable transformations, these two equations are transformed
into equations in nonlinear variables and the corresponding Lax pairs are
derived.

PACS numbers: 02.30.-f, 02.30.Ik, 05.45.Yv

1. Introduction

The purpose of this short paper is to propose two new integrable differential–difference
equations. It is well-known that there are many approaches to search for new integrable
systems in the literature. Two effective ways to do so are via Hirota’s method and Bäcklund
transformations (BTs) [1–6]. Specifically, one first starts from some types of Hirota’s bilinear
equations and then test them for existence of multi-soliton solutions or bilinear BTs [7, 8].
Following [8], we consider a generalized bilinear differential–difference equation

F(Dx,Dt , sinh(α1Dn), . . . , sinh(αlDn))f (n) •f (n) = 0 (1)

whereF is an even order polynomial inDx,Dt , sinh(α1Dn), . . . and sinh(αlDn), and l is a given
positive integer; theαi , where i = 1, 2, . . . , l, are l different constants, andF(0, 0, . . . , 0) = 0.
Here Hirota’s bilinear differential operatorDm

x Dk
t and the bilinear difference operator exp(δDn)

are defined by [1–4]
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Dm
x Dk

t a •b ≡
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)k

a(x, t)b(x ′, t ′)|x ′=x,t ′=t

exp(δDn)a(n) •b(n) ≡ exp

[
δ

(
∂

∂n
− ∂

∂n′

)]
a(n)b(n′)|n′=n = a(n + δ)b(n − δ).

It is known that several celebrated lattices are of type (1). For examples, the two-dimensional
Toda lattice

∂2Qn

∂x∂y
= exp(Qn−1 − Qn) − exp(Qn − Qn+1) (2)

can be written as

[DxDy − 4 sinh2( 1
2Dn)]f (n) •f (n) = 0 (3)

by the dependent variable transformation Qn = ln(f (n)/f (n+1)), while the so-called Lotka–
Volterra (LV) or Kac–van Moerbeke equation

ut (n) = u(n)(u(n − 1) − u(n + 1)) (4)

is transformed into bilinear form

[Dt sinh( 1
2Dn) + cosh( 3

2Dn) − cosh( 1
2Dn)]f (n) •f (n) = 0 (5)

through the dependent variable transformation

u(n) = f (n − 3
2 )f (n + 3

2 )

f (n − 1
2 )f (n + 1

2 )
.

Let us recall that a simple procedure [8] for finding new integrable candidates of type (1) is to
search for suitable F,G,A and B such that the relation

[F(Dx,Dt , sinh(α1Dn), . . . , sinh(αlDn))f (n) •f (n)]

×[G(Dx,Dt , sinh(β1Dn), . . . , sinh(βs1Dn))g(n) •g(n)]
= [F(Dx,Dt , sinh(α1Dn), . . . , sinh(αlDn))g(n) •g(n)]

×[G(Dx,Dt , sinh(β1Dn), . . . , sinh(βs1Dn))f (n) •f (n)]

can be derived from

A(Dx,Dt , exp(γ1Dn), . . . , exp(γs2Dn))f (n) •g(n) = 0 (6)

B(Dx,Dt , exp(ω1Dn), . . . , exp(ωs3Dn))f (n) •g(n) = 0 (7)

where si, i = 1, 2, 3, are given positive integers and βi, i = 1, . . . s1, γj , j = 1, . . . , s2, and
ωk, k = 1, . . . , s3, are constants. In this circumstance, (6) and (7) may be viewed as a BT
for (1) if G(Dx,Dt , sinh(β1Dn), . . . , sinh(βslDn))f (n) •f (n) �= 0. In the following we will
report two new bilinear differential–difference equations of type (1) found in this context. One
is

[DxDt cosh( 1
2Dn) + Dx sinh( 1

2Dn) + Dt sinh( 1
2Dn)]f (n) •f (n) = 0 (8)

and the other is

[Dt sinh( 1
2Dn) + D3

x sinh( 1
2Dn)]f (n) •f (n) = 0. (9)

It turns out that equation (8) can be transformed into

(u(n + 1) + u(n))xt + ux(n + 1)ut (n + 1) − ux(n)ut (n) + (u(n + 1) − u(n))x

+(u(n + 1) − u(n))t = 0 (10)
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by the dependent variable transformation u(n) = ln(f (n + 1)/f (n)), whereas (9) becomes

(u(n + 1) − u(n))t + 3(u(n + 1) − u(n))x(u(n + 1) − u(n))2 + (u(n + 1) − u(n))xxx

+3(u(n + 1) + u(n))x(u(n + 1) − u(n))x

+3(u(n + 1) + u(n))xx(u(n + 1) − u(n)) = 0 (11)

through the dependent variable transformation u(n) = (ln f (n))x . We will also show that (10)
and (11) are integrable in the sense of having Lax pairs.

This paper is organized as follows. In section 2, we will present a bilinear BT for (8). As a
result, a Lax pair for (10) is derived from the BT. A bilinear BT for (9) is obtained in section 3.
A Lax pair for (11) is also given. These results are summarized in section 4. Finally, in the
appendix we list some bilinear operator identities used in the paper.

2. Bilinear BT for (8) and Lax pair for (10)

In this section, we will show that (8) is integrable in the sense of having a bilinear BT. In fact,
we have the following result.

Proposition 1. The bilinear equation (8) has the BT

[Dte
1
2 Dn − λDte

− 1
2 Dn]f (n) •g(n) = [(µ − 2)e

1
2 Dn − λµe− 1

2 Dn ]f (n) •g(n) (12)

[λDxe− 1
2 Dn + Dxe

1
2 Dn ]f (n) •g(n) = [γ e

1
2 Dn + (2λ + λγ )e− 1

2 Dn]f (n) •g(n) (13)

where λ,µ and γ are arbitrary constants.

This result can be proved by using Hirota’s bilinear operator identities. We omit the details
of the proof. Instead we are going to construct soliton solutions of (8) by using the BT (12)
and (13). Firstly, by applying the BT (12) and (13) to the trivial solution f (n) = 1, we can
obtain the 1-soliton solution

g(n) = 1 + exp
(
pn + qx + rt + η0

)
for the parameters µ = 2/(1 − λ), γ = −2λ/(1 + λ), where p, λ and η0 are constants and

q = − 2λ(e
1
2 p − e− 1

2 p)

(1 + λ)(λe
1
2 p + e− 1

2 p)
r = 2λ(e− 1

2 p − e
1
2 p)

(1 − λ)(λe
1
2 p − e− 1

2 p)
.

Furthermore, by applying the BT (12) and (13) to the 1-soliton solution f (n) = 1 + exp(η1),
we can deduce the following 2-soliton solution

g(n) = 1 + A1eη1 + eη2 + A2eη1+η2

where

ηi = pin + qix + ri t + η0
i

A1 = [2λ2 − r1(1 − λ2)]e
1
2 p1 + [λ2r1(1 − λ2) − 2λ2]e− 1

2 p1

[2λ2 + λ2r1(1 − λ2)]e
1
2 p1 − [r1(1 − λ2) + 2λ2]e− 1

2 p1

A2 = [(r1 − r2)(1 − λ2) − 2λ2]e
1
2 (p1−p2) + [2λ2 − λ2(r1 − r2)(1 − λ2)]e− 1

2 (p1−p2)

−[λ2(r1 + r2)(1 − λ2) + 2λ2]e
1
2 (p1+p2) + [2λ2 + (r1 + r2)(1 − λ2)]e− 1

2 (p1+p2)

qi = − 2λi(e
1
2 pi − e− 1

2 pi )

(1 + λi)(λie
1
2 pi + e− 1

2 pi )
ri = 2λi(e− 1

2 pi − e
1
2 pi )

(1 − λi)(λie
1
2 pi − e− 1

2 pi )
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with pi, λi and η0
i being constants for the set of parameters λ = λ2, µ = 2/(1 − λ2) and

γ = −2λ2/(1 + λ2). Besides, by using MATHEMATICA, we can show that (8) has the
3-soliton solutions

f = 1 + eη1 + eη2 + eη3 + A12eη1+η2 + A13eη1+η3 + A23eη2+η3 + A12A23A13eη1+η2+η3

where

ηi = pin + qix + ri t + η0
i

qi = − 2λi(e
1
2 pi − e− 1

2 pi )

(1 + λi)(λie
1
2 pi + e− 1

2 pi )
ri = 2λi(e− 1

2 pi − e
1
2 pi )

(1 − λi)(λie
1
2 pi − e− 1

2 pi )

Aij = − (qi − qj )(ri − rj ) cosh( 1
2 (pi − pj )) + (qi − qj + ri − rj ) sinh( 1

2 (pi − pj ))

(qi + qj )(ri + rj ) cosh( 1
2 (pi + pj )) + (qi + qj + ri + rj ) sinh( 1

2 (pi + pj ))
.

Next, we want to derive a nonlinear superposition formula for (8). Suppose that

f0(n)
(λ1,µ1,γ1)−→ f1(n)

(λ2,µ2,γ2)−→ f12(n)

and

f0(n)
(λ2,µ2,γ2)−→ f2(n)

(λ1,µ1,γ1)−→ f21(n).

Based on the permutability of the BT (12) and (13), i.e. f12(n) = f21(n), and with some
calculations, we can derive the following nonlinear superposition formula:(

e− 1
2 Dn − 1

λ1λ2
e

1
2 Dn

)
f0 •f12 = c

(
λ1e

1
2 Dn − λ2e− 1

2 Dn
)
f1 •f2

with c being a nonzero constant, which is similar to that for a differential–difference CDGKS
equation [9].

In the following, we are going to derive a Lax pair for (10) from the BT (12) and (13). For
this purpose, we set ψ(n) = g(n)/f (n), u(n) = ln(f (n + 1)/f (n)). Then from the bilinear
BT (12) and (13), we have

(λψ(n + 1) − ψ(n))t = −ut (n)(ψ(n) + λψ(n + 1)) + µ(ψ(n) − λψ(n + 1)) − 2ψ(n) (14)

−(λψ(n + 1) + ψ(n))x = ux(n)(λψ(n + 1) − ψ(n)) + γψ(n) + (2λ + λγ )ψ(n + 1). (15)

Furthermore we introduce T1 = λT+ − 1, T2 = 1 + λT+ and ψ1 = T1ψ(n), ψ2 = T2ψ(n)

where T+ is a shift operator defined by T+u(n) ≡ u(n + 1). Then (14) and (15) become

ψ1t = −(ut (n) + 1)ψ2 + (1 − µ)ψ1 (16)

ψ2x = −(ux(n) + 1)ψ1 − (γ + 1)ψ2. (17)

By some calculations and using the relations

T1ψ2 = T2ψ1

T1(a(n)b(n)) = 1
2 (b(n + 1) − b(n))T2a(n) + 1

2 (b(n + 1) + b(n))T1a(n)

T2(a(n)b(n)) = 1
2 (b(n + 1) + b(n))T2a(n) + 1

2 (b(n + 1) − b(n))T1a(n)

we can derive (10) from the compatibility condition: (T1ψ2)xt = (T2ψ1)tx . The result can be
summarized as follows:

Proposition 2. Equations (14) and (15) constitute a Lax pair for (10).
Furthermore, concerning bilinear equation (8), we have found the following Lie

symmetries:

σ1 = (h1(t) + h2(x))f

σ2 = h1(t)ft + (n − x)h1(t)f

σ3 = h2(x)fx + (n − t)h2(x)f

where h1(t) and h2(x) are arbitrary functions of t and x respectively.
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3. Bilinear BT for (9) and Lax pair for (11)

We now turn to consider the bilinear equation (9). Concerning (9), we have the following
result:

Proposition 3. The bilinear equation (9) has the BT

Dxe
1
2 Dnf (n) •g(n) = (λDxe− 1

2 Dn + µe
1
2 Dn − λµe− 1

2 Dn)f (n) •g(n) (18)

(Dt − 3µD2
x + D3

x + 3µ2Dx + γ )f (n) •g(n) = 0 (19)

where λ,µ and γ are arbitrary constants.

Proof. Let f (n) be a solution of equation (9). If we can show that equations (18) and (19)
guarantee that the following relation

P ≡ [Dt sinh( 1
2Dn) + D3

x sinh( 1
2Dn)]g(n) •g(n) = 0

hold, then equations (18) and (19) form a Bäcklund transformation. �

In fact, by equations (A.1)–(A.5), (18) and (19), we have

−[e
1
2 Dnf (n) •f (n)]P = 2 sinh( 1

2Dn)[(Dt + D3
x)f (n) •g(n)] •f (n)g(n)

−3Dx(Dxe
1
2 Dnf (n) •g(n)) • (Dxe− 1

2 Dnf (n) •g(n))
= 2 sinh( 1

2Dn)[(Dt + D3
x)f (n) •g(n)] •f (n)g(n)

−3Dx[(µe
1
2 Dn − λµe− 1

2 Dn)f (n) •g(n)] • (Dxe− 1
2 Dnf (n) •g(n))

= 2 sinh( 1
2Dn)[(Dt + D3

x)f (n) •g(n)] •f (n)g(n)

−3µ[2 sinh( 1
2Dn)(D

2
xf (n) •g(n)) •f (n)g(n)

−Dx(Dxe
1
2 Dnf (n) •g(n)) • (Dxe

1
2 Dnf (n) •g(n))]

−λµDx(e
− 1

2 Dnf (n) •g(n)) • (Dxe− 1
2 Dnf (n) •g(n))

= 2 sinh( 1
2Dn)[(Dt − 3µD2

x + D3
x)f (n) •g(n)] •f (n)g(n)

+6µ2 sinh( 1
2Dn)(Dxf (n) •g(n)) •f (n)g(n) = 0.

In this way we have completed the proof of proposition 3.
We are going to construct soliton solutions of (9) by using the BT (18) and (19). Firstly,

by applying the BT (18) and (19) to the trivial solution f (n) = 1, we can obtain the 1-soliton
solution

g(n) = 1 + exp
(
pn + qx − q3t + η0

)
where p and η0 are constants, and the parameters λ,µ given by λ = q/(1 + q), µ = −q and
γ = 0. Further by applying the BT (18) and (19) to the 1-soliton solution f (n) = 1 + exp(η1)

we can deduce the following 2-soliton solution

g(n) = 1 + A1eη1 + eη2 + A2eη1+η2

where

ηi = pin + qix − q3
i t + η0

i

A1 = q2 + q1

q2 − q1
A2 = − sinh( 1

2 (p1 − p2))

sinh( 1
2 (p1 + p2))
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with pi, qi and η0
i constants for the set of parameters λ = q2/(1 + q2), µ = −q2 and γ = 0.

Besides, by using MATHEMATICA, we can show that (9) has the 3-soliton solution

f = 1 + eη1 + eη2 + eη3 + A12eη1+η2 + A13eη1+η3 + A23eη2+η3 + A12A23A13eη1+η2+η3

where

ηi = pin + qix − q3
i t + η0

i Aij = (qi − qj ) sinh( 1
2 (pi − pj ))

(qi + qj ) sinh( 1
2 (pi + pj ))

.

Similar to those in section 2, based on the permutability of the BT (18) and (19), we can also
derive the following nonlinear superposition formula for (9):(

e− 1
2 Dn − 1

λ1λ2
e

1
2 Dn

)
f0 •f12 = c

(
λ1e

1
2 Dn − λ2e− 1

2 Dn

)
f1 •f2

with c being a nonzero constant.
In the following, we are going to derive a Lax pair for (11) from the BT (18) and (19). For

this purpose, we set ψ(n) = g(n)/f (n), u(n) = (ln f (n))x . Then from the bilinear BT (18)
and (19), we have

(λψ(n + 1) − ψ(n))x = (u(n) − u(n + 1))(ψ(n) + λψ(n + 1)) + µ(ψ(n) − λψ(n + 1)) (20)

ψt(n) = −3µψxx(n) − 6µux(n)ψ(n) − ψxxx(n) − 6ux(n)ψx(n) − 3µ2ψx(n) + γψ(n).

(21)

In analogy to section 2, we introduce T1 = λT+ − 1, T2 = 1 + λT+ and ψ1 = T1ψ(n), ψ2 =
T2ψ(n), where T+ is a shift operator defined by T+u(n) ≡ u(n+1). Then (20) and (21) become

ψ1x = −(u(n + 1) − u(n))ψ2 − µψ1 (22)

ψ1t = −3µψ1xx − ψ1xxx − 3µ(ux(n + 1) − ux(n))ψ2 − 3µ(ux(n + 1) + ux(n))ψ1

−3(ux(n + 1) − ux(n))ψ2x − 3(ux(n + 1) + ux(n))ψ1x + γψ1 − 3µ2ψ1x.

(23)

By some calculations and using relations

T1ψ2 = T2ψ1

T1(a(n)b(n)) = 1
2 (b(n + 1) − b(n))T2a(n) + 1

2 (b(n + 1) + b(n))T1a(n)

T2(a(n)b(n)) = 1
2 (b(n + 1) + b(n))T2a(n) + 1

2 (b(n + 1) − b(n))T1a(n)

we can derive (11) from the compatibility condition: (ψ1)xt = (ψ1)tx . To summarize, we
obtain the following result:

Proposition 4. Equations (20) and (21) constitute a Lax pair for (11).
Besides, we can obtain the following Lie symmetries for (9):

σ1 = h(t)f

σ2 = xh(t)f

σ3 = h(t)fx − 1
12 ḣ(t)x

2f

σ4 = h(t)ft + 1
3xḣ(t)fx − 1

108 ḧ(t)x
3f

where h(t) is an arbitrary function of t and ḣ(t) ≡ dh(t)
dt , ḧ(t) ≡ d2h(t)

dt2 .
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4. Conclusions and discussion

Two bilinear differential–difference equations have been proposed. Their corresponding
bilinear BTs have been presented. Starting from the bilinear BTs, soliton solutions are
generated. By dependent variable transformations, these two equations are transformed into
equations in nonlinear variables and the corresponding Lax pairs are derived. Besides, we
can also consider the continuous analogues of these two differential–difference equations. For
example, we look at the differential–difference equation (11) and expand u(n + 1) as

u(n + 1) = u + ε
∂

∂y
u +

ε2

2

∂2

∂y2
u +

ε3

6

∂3

∂y3
u + · · · (24)

ut (n + 1) = ut + ε
∂2

∂y∂t
u +

ε2

2

∂3

∂y2∂t
u +

ε3

6

∂4

∂y3∂t
u + · · · (25)

ux(n + 1) = ux + ε
∂2

∂y∂x
u +

ε2

2

∂3

∂y2∂x
u +

ε3

6

∂4

∂y3∂x
u + · · · . (26)

Substituting (24)–(26) etc into (11) and neglecting higher-order terms of ε, we obtain

uyt + uxxxy + 6uxuyx + 6uxxuy = 0 (27)

which is nothing but the Ito equation [10] with y ↔ t . In fact, by the dependent variable
transformation u = (ln f )x , we can transform (27) into bilinear form

Dy(Dt + D3
x)f •f = 0. (28)

Obviously, when y = x, (27) becomes the KdV equation by integration.
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Appendix

The following bilinear operator identities hold for arbitrary functions a, b and c:

[Dt sinh( 1
2Dn)a •a][exp( 1

2Dn)b •b] − [Dt sinh( 1
2Dn)b •b][exp( 1

2Dn)a •a]

= 2 sinh( 1
2Dn)(Dta •b) •ab (A.1)

[D3
x sinh( 1

2Dn)a •a][exp( 1
2Dn)b •b] − [D3

x sinh( 1
2Dn)b •b][exp( 1

2Dn)a •a]

= 2 sinh( 1
2Dn)(D

3
xa •b) •ab − 3Dx[Dx exp( 1

2Dn)a •b] • [Dx exp(− 1
2Dn)a •b]

(A.2)

Dx[(Dx exp( 1
2Dn)a •b) • (exp(− 1

2Dn)a •b) + (exp( 1
2Dn)a •b) • (Dx exp(− 1

2Dn)a •b)]

= 2 sinh( 1
2Dn)(D

2
xa •b) •ab (A.3)

sinh(δDn)c •c = 0 (A.4)

Dxc •c = 0. (A.5)
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